Network performance in distributed training | Red Hat Dev...

2 0f23

Network performance in distributed
training: Maximizing GPU utilization on
OpenShift

October 16, 2025 Tanya Osokin, Kevin Pouget, Michey Mehta
Related topics: Artificial intelligence, Containers, Kubernetes
Related products: Red Hat OpenShift

Share: 8 f In =&

[@ Table of contents: v

We compared two IBM Cloud GPU clusters—one with NVIDIA L40S GPUs
and one with HIOO GPUs—head-to-head to see what really drives
distributed training performance.

The key finding is that for distributed training, the choice of network
architecture is the most significant factor in performance, far outweighing
the capabilities of the default container networking. Our tests conclusively
show that using the standard Red Hat OpenShift pod network for
internode communication creates a severe performance bottleneck that
prevents expensive GPU resources from being fully utilized.

For the L40S cluster, leveraging secondary Virtual Network Interface
Cards (vNICs) provided a significant performance advantage over the
default pod network, with this gap widening at scale to a peak
performance increase of 132% in the 8-node test. For the more powerful
H100 cluster, the impact was even more stark: switching from vNICs to a
high-throughput single root input/output virtualization (SR-IOV) network
yielded a 3x increase in training throughput. While enabling remote direct
memory access (RDMA) over SR-IOV provided only a marginal
performance increase for the model size tested, it is a critical technology
for larger models where CPU network management becomes a

| FUATEN PR P

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://developers.redhat.com/author/tanya-osokin
https://developers.redhat.com/author/tanya-osokin
https://developers.redhat.com/author/tanya-osokin
https://developers.redhat.com/author/tanya-osokin
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/author/michey-mehta
https://developers.redhat.com/author/michey-mehta
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/kubernetes
https://developers.redhat.com/topics/kubernetes
https://developers.redhat.com/products/openshift/overview
https://developers.redhat.com/products/openshift/overview
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://developers.redhat.com/products/openshift/overview
https://developers.redhat.com/products/openshift/overview

Network performance in distributed training | Red Hat Dev...

30f23

potLLEeliecCk.
Our primary recommendations are as follows:

¢ High-performance networking is essential for scalable distributed
training on OpenShift.

e For clusters with top-tier GPUs like the H100, SR-IOV NICs with
higher bandwidth are required to prevent the network from
becoming the primary bottleneck.

e For clusters with mid-range GPUs like the L40S, secondary vNICs
provide a cost-effective solution for achieving efficient scaling.

Investing in the appropriate network infrastructure is critical to maximizing
the return on investment in GPU hardware and ensuring cost-effective,
high-performance Al operations at scale.

Technical background

The distributed training process in this report is based on a common
methodology for training large language models. While our specific tests
used the open source Instructlab project for its training script and
efficient data processing, the findings on network performance are
broadly applicable to any distributed training framework.

The core training methodology is built on PyTorch's Fully Sharded Data
Parallel (FSDP) feature. FSDP is a data parallelism technique that enables
the training of very large models by sharding the model's parameters,
gradients, and optimizer states across all available GPUs in the cluster. By
ensuring each GPU only holds a fraction of the total model, FSDP makes
it possible to train models that would otherwise be too large to fit into a
single GPU's memory.

This sharding strategy, however, makes the training process highly
dependent on the speed and efficiency of the underlying network. GPUs
must constantly communicate to exchange the necessary parameters
during the forward and backward passes, so the choice of network
architecture becomes a critical factor in overall FSDP performance.

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://github.com/instructlab
https://github.com/instructlab
https://github.com/instructlab
https://docs.pytorch.org/docs/stable/fsdp.html
https://docs.pytorch.org/docs/stable/fsdp.html
https://docs.pytorch.org/docs/stable/fsdp.html

Network performance in distributed training | Red Hat Dev...

4 of 23

Hardware we used

Our testing utilized two distinct IBM Cloud GPU clusters to understand
how different hardware configurations respond to network optimization.

2xL40S cluster workers

The gx3-48x240x2140s virtual instance in IBM Cloud features 48 vCPUs,
240 GiB of RAM, and 2 NVIDIA L40S GPUs with 48 GB of memory each.
It offers a high-speed network connection with a bandwidth of 100 Gbps

per vVNIC, making it ideal for high-performance computing tasks such as
Al, machine learning, and large-scale simulations. This configuration
provides a powerful blend of CPU, GPU, and memory resources for
demanding workloads.

In our tests, we scaled the system from 1to 8 nodes to evaluate how the
performance changes with increased computational resources. This
approach allowed us to analyze the system's scalability and understand
the impact of node scaling on overall performance.

8xH100 cluster nodes

The gx3d-160x1792x8h100 virtual instance in IBM Cloud is equipped with
160 vCPUs, 1,792 GiB of RAM, and 8 NVIDIA H100 GPUs with 80 GB of
memory each. It provides a high-speed network connection with a
bandwidth of 200 Gbps per vNIC and up to 8 SR-IOV NIC with 400 Gbps
each, making it well-suited for extremely demanding workloads such as

advanced Al, deep learning, and high-performance computing. This
configuration delivers substantial computational power with an impressive
GPU setup for large-scale simulations and data-intensive tasks.

In our tests, we scaled from 1to 2 nodes, with each node equipped with 8
NVIDIA H100 GPUs. This configuration provided substantial
computational power per node, allowing us to evaluate how performance
changes when doubling the number of nodes, with each node capable of
handling complex, GPU-intensive workloads due to the high-performance
H100 GPUs.

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://cloud.ibm.com/docs/vpc?topic=vpc-profiles&interface=ui
https://cloud.ibm.com/docs/vpc?topic=vpc-profiles&interface=ui
https://cloud.ibm.com/docs/vpc?topic=vpc-profiles&interface=ui
https://cloud.ibm.com/docs/vpc?topic=vpc-accelerated-profile-family
https://cloud.ibm.com/docs/vpc?topic=vpc-accelerated-profile-family
https://cloud.ibm.com/docs/vpc?topic=vpc-accelerated-profile-family

Network performance in distributed training | Red Hat Dev...

5 of 23

Test details

Our performance testing was conducted with reproducibility and
transparency in mind, under Cl automation. In the subsections below we
detail the key aspects of the test environment, the test harness and the
training job.

Testing environment

All the tests ran on an OpenShift cluster with the following platform
versions:

e OpenShift version: 4.18.16
e OpenShift Al version: 2.19.0

Test automation harness

The entire test workflow was automated using TOPSAIL, an open source
toolbox for orchestrating complex test scenarios on OpenShift.

The fine tuning project within TOPSAIL was used to manage all
aspects of the test execution, including preparing the environment,
preprocessing the dataset, and dynamically generating and deploying all
necessary Kubernetes resources. This includes the PyTorchJob manifest,
the config.json hyperparameter file, and the run_ilab.sh entrypoint script
detailed below. This automation ensures a consistent and repeatable
testing methodology across all configurations.

Training job specification

The distributed training jobs were orchestrated using the PyTorchJob
custom resource. The following is a summary of the key configuration
parameters for an 8-node ilab job example:

apiVersion: kubeflow.org/vl
kind: PyTorchJob
metadata:

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://github.com/openshift-psap/topsail
https://github.com/openshift-psap/topsail
https://github.com/openshift-psap/topsail
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/templates/fine_tuning_job.yaml.j2
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/templates/fine_tuning_job.yaml.j2
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/templates/fine_tuning_job.yaml.j2
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/templates/ilab_base_config.yaml.j2
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/templates/ilab_base_config.yaml.j2
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/templates/ilab_base_config.yaml.j2
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/files/entrypoint/run_ilab.sh
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/files/entrypoint/run_ilab.sh
https://github.com/openshift-psap/topsail/blob/main/projects/fine_tuning/toolbox/fine_tuning_run_fine_tuning_job/files/entrypoint/run_ilab.sh

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

name: ilab
namespace: fine-tuning-testing

spec:
pytorchReplicaSpecs:
Master:
replicas: 1
restartPolicy: Never
template:
spec:
containers:
- name: pytorch
image: registry.redhat.io/rhelail/instructlab-nvi
command:
- bash
- /mnt/entrypoint/run_ilab.sh
resources:
limits:
nvidia.com/gpu: "2"
requests:
cpu: "1*
memory: 10Gi
nvidia.com/gpu: "2"
... and other configurations
Worker:

replicas: 7
restartPolicy: Never
template:
spec:
containers:
- name: pytorch
image: registry.redhat.io/rhelail/instructlab-nvi
command:
- bash
- /mnt/entrypoint/run_ilab.sh
resources:
limits:
nvidia.com/gpu: "2"
requests:
cpu: "1*
memory: 10Gi

6 of 23 10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev...

7 of 23

nvidia.com/gpu: "2"
volumeMounts:
- mountPath: /dev/shm
name: shm-volume
... and other volume mounts
volumes:
- name: storage-volume
persistentVolumeClaim:
claimName: fine-tuning-storage
- name: shm-volume
emptyDir:
medium: Memory
sizelLimit: 20Gi1
... and other volumes

Copy snippet

This configuration established a distributed training cluster with one
Controller and seven Worker replicas. Each replica pod was provisioned
with 2 NVIDIA GPUs, 1 CPU core, and 10 Gi of system memory. A key
architectural choice was the use of a 20 Gi in-memory volume (/dev/
shm) to facilitate high-performance inter-process communication,
essential for distributed training.

The core of the training process was executed via torchrun . The
following parameters remained constant across all tests to ensure a
consistent baseline:

e --model name or path=granite-3.1-8b-starter-v2

e --num_epochs=1

e --data path=data.jsonl
Key variables that were adjusted for each specific test scenario included
the number of nodes (- -nnodes), the number of processes per node

(--nproc_per _node), and the maximum batch length (- -
max_batch len).

The model was trained on a dataset containing 9,872 tokenized
instruction-response samples with average sequence length of 1,483

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev...

8 of 23

tokens per sample.

Network configurations

This study evaluated performance across several distinct network
architectures to determine their impact on internode communication, a
critical factor in distributed training throughput. The subsections below
describe the four different network configurations.

Pod network

Description: The default OpenShift software-defined network (OVN),
where each pod receives an IP address and communicates over a
virtualized overlay network.

Performance characteristics: The bandwidth of the pod network is not
fixed; it is limited by the underlying physical network and is reduced by the
overhead of the software-defined network (SDN) encapsulation
protocols. This introduces latency and consumes CPU cycles, making it
unsuitable for high-throughput/low latency distributed workloads.

VvNIC

Description: A virtualized network interface that allows a Virtual Machine
(VM) to interact with the network as if it had its own dedicated hardware,
abstracting the physical Network Interface Card(NIC) using the virtio
protocol.

Performance characteristics: The bandwidth of a vNIC is capped by the
instance profile. In our tests, this was 100 Gbps for the L40S nodes

and 200 Gbps for the H100 nodes. While faster than the pod network, it
still carries virtualization overhead from the hypervisor.

SR-I0OV

Description: SR-IOV is a Peripheral Component Interconnect Express
(PCle) specification that lets a single physical NIC expose multiple Virtual

CiinA~tiane I\N/CAN Aivarths +A ~tiAac+ VN vArmaAviinA hurmAanidicAar ~canit~rhin~

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

FUICLIVLID (VIS) UNTLLY LU UTOL VIVIDS, ITHITUVIIIY 1Y DT VIDUIL SwiLLlly

overhead.

Performance characteristics: SR-IOV provides near-line-rate
performance. For the H100 cluster, this meant accessing the full
bandwidth of the physical 400 Gbps NICs, resulting in a dramatic increase
in throughput.

SR-IOV with RDMA

Description: This combines SR-IOV with RDMA, enabling network
interfaces to directly access the memory of other nodes without involving
the CPU. This zero-copy data transfer mechanism is designed for
maximum throughput and minimal latency.

Performance characteristics: The bandwidth is the same as the

underlying SR-IOV interface (for example, 400 Gbps), but RDMA further
reduces latency and CPU utilization by offloading data transfer operations
from the CPU, which is critical for workloads with very large data transfers.

Network configurations available in L40S clusters

e Pod network

¢ VNICs on different subnets

Network configurations available in H100 clusters

e Pod network

e VNICs

¢ SR-IOV NICs

e SR-IOV NICs with RDMA

IBM Cloud NIC creation procedures

This section outlines the steps for creating and attaching various network
interface cards in IBM Cloud, covering both standard vNICs and high-
performance SR-IOV NICs.

9 of 23 10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

Creating a subnet

Before a vNIC can be created, it must be associated with a subnet. In the
IBM Cloud console, this process begins under the Virtual Private Cloud
(VPC) Infrastructure section by navigating to Subnets and

selecting Create (Figure 1). You must then provide a unique name for the
subnet, select the parent VPC, and choose a specific location (zone).

.....

Figure 1: Attaching a vNIC to a Virtual Server Instance.

To enhance network connectivity for an existing Virtual Server Instance
(VSI), additional vNICs can be created and attached. The process begins
by navigating to the specific VSI within the IBM Cloud console (Figure 2).

o o o o o o o o]

Figure 2: Viewing the virtual server instances in the IBM Cloud console.

In the instance's details page (Figure 3), select the Network interfaces
tab on the Networking page, which lists all currently attached NICs. Here,
you can initiate the creation of a new interface.

10 of 23 10/20/25, 1:44 PM

https://developers.redhat.com/sites/default/files/image2_118.png
https://developers.redhat.com/sites/default/files/image2_118.png
https://developers.redhat.com/sites/default/files/image2_118.png
https://developers.redhat.com/sites/default/files/image5_65.png
https://developers.redhat.com/sites/default/files/image5_65.png
https://developers.redhat.com/sites/default/files/image5_65.png

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

......

Wbl vrveey sy

Figure 3: The virtual server instance details page overview.

The configuration requires specifying a name for the new vNIC and
selecting a target subnet from an existing VPC. It's crucial that the chosen
subnet is in the same zone as the VSI. Once the configuration is
confirmed, the vNIC is provisioned and attached to the instance,
appearing in the interface list and becoming available to the guest
operating system for configuration. See Figure 4.

VArnal server Intaeces

[P Oesermre P Ploing 10 Teiie g primne N 3 cpmtig

Figure 4: The interface list showing the new vNIC.
Procedure for adding SR-IOV NICs in IBM Cloud
For workloads that demand high performance and low latency, SR-IOV

11 of 23 10/20/25, 1:44 PM

https://developers.redhat.com/sites/default/files/image3_102.png
https://developers.redhat.com/sites/default/files/image3_102.png
https://developers.redhat.com/sites/default/files/image3_102.png
https://developers.redhat.com/sites/default/files/image6_54.png
https://developers.redhat.com/sites/default/files/image6_54.png
https://developers.redhat.com/sites/default/files/image6_54.png

Network performance in distributed training | Red Hat Dev...

12 of 23

can be enabled to provide direct hardware access. This capability must be
enabled on the VSI profile during its initial creation. Once the VSl is
provisioned with an SR-IOV capable profile, the process for attaching an
SR-IOV network interface is similar to that of a standard vNIC.

Navigate to the Cluster network attachments tab of the VSI (Figure 5).

vvvvvvvvvv

CatInn oo Araceset Chumer setaork wtartace Chmer setmand wbast

Figure 5: Viewing details about the network attachments and interfaces associated
with the server.

Within the interface creation menu, an additional option or tab will be
available for SR-IOV. From here, you can create the SR-IOV interface,
which allocates a VF from the physical NIC directly to the virtual machine.
This bypasses the hypervisor's virtual switch, significantly reducing
network latency and CPU overhead, and exposes the interface to the
guest operating system as a physical device ready for high-throughput
communication.

Entrypoint script

The run_ilab.sh script dynamically configured the networking
environment and launched the training process. The following sections
highlight its key logic.

RDMA configuration

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://developers.redhat.com/sites/default/files/image7_45.png
https://developers.redhat.com/sites/default/files/image7_45.png
https://developers.redhat.com/sites/default/files/image7_45.png

Network performance in distributed training | Red Hat Dev...

13 of 23

This block activates only when the WITH RDMA variable is set. It detects
the available SR-IOV NICs with RDMA capabilities and sets the

necessary NCCL environment variables to ensure the PyTorch
distributed back end uses the high-performance RDMA path for internode
communication.

if [["${WITH RDMA:-}" 11; then
export NCCL TOPO FILE=/mnt/storage/topo.xml
num rdma=$(ls /sys/class/infiniband/ | wc -1)

IFS=',"' read -ra ADDR <<< "$NCCL SOCKET IFNAME"
length=${#ADDR[@] }
NCCL IB HCA="'

for idx in $(seq $((num rdma-1)) -1 $((num rdma-length)));
if [-z "$NCCL IB HCA"]; then
NCCL IB HCA="mlx5 $idx"
else
NCCL IB HCA="$NCCL IB HCA,mlx5 $idx"
fi
done
export NCCL IB HCA="$NCCL IB HCA"
export NCCL IB DISABLE=0
export NCCL IB GID INDEX=3
export NCCL DEBUG=info
fi

Copy snippet

vNIC IP address remapping

This section runs when secondary vNICs or SR-IOV NICs are used
(specified by the NCCL SOCKET_ IFNAME variable).Itreads a
predefined mapping file to dynamically reconfigure each pod's secondary
network interfaces, assigning them the correct IP addresses and adding
the necessary routes to enable communication across different subnets.

if [["${NCCL SOCKET IFNAME:-}"]1; then
MAPPING="$(cat /mnt/nic-mapping/nodename ip mapping.yaml)
for ifname in $(echo $NCCL SOCKET IFNAME | tr , " "); do

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev...

14 of 23

current _ip=$(ip route | grep "$ifname " | cut -d" " -
correct_ip=$(echo "$MAPPING" | grep "$NODE HOSTNAME"

ip addr del "$current ip/24" dev "$ifname"
ip addr add "$correct ip/24" dev "$ifname"

while read remote mapping; do
remote ip=%(echo "$remote mapping" | cut -d: -f4)
ip route add $remote ip/32 via "$correct ip" meti
done <<< $(echo "$MAPPING" | grep -v "$NODE HOSTNAME'
done
fi

Copy snippet

IP address mapping file (hodename_ip_mapping.yaml)

The IP remapping logic relies on a pre-generated YAML file that is
mounted into each pod. This file serves as the single source of truth for
the network topology, mapping each node's hostname to its assigned
secondary network interfaces and their correct IP addresses. The content
of the file is stored inside a ConfigMap in the cluster:

apiVersion: vl
data:
nodename ip mapping.yaml: |

mini-scale-cjzbqg-worker-2-4k441:ensl3:netl:10.249.65.9
mini-scale-cjzbqg-worker-2-4k441:ensl4:net2:10.249.66.9
mini-scale-cjzbqg-worker-2-4k441:ensl5:net3:10.249.67.9
mini-scale-cjzbqg-worker-2-4k441:ensl6:net4:10.249.68.9
mini-scale-cjzbqg-worker-2-4k441:ensl7:net5:10.249.69.9

kind: ConfigMap

metadata:
name: ilab-nic-mapping
namespace: fine-tuning-testing

Copy snippet

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

torchrun launch command

This is the final execution step. The script launches the distributed training
jobusing torchrun . It dynamically builds the command-line arguments
by parsinga config.json file, which contains all the hyperparameters
for the training run, suchas --nnodes , --nproc _per _node ,

and --max_batch len .

config json=$(jq . "$CONFIG JSON PATH")
if ! torchrun \
--node _rank "${RANK}" \
--rdzv_endpoint "${MASTER ADDR}:${MASTER PORT}" \

$(echo "$config json" | jq -r '. | to entries | .[] | ("-
then

ret=1

echo "TORCHRUN FAILED :/ (retcode=$ret)"

fi

Copy snippet

Hyperparameter configuration (config.json)

The torchrun command is configured viaa config.json file mounted
into the pod. This allows for flexible and repeatable test execution. Below
is an example configuration used in one of the test runs:

"nnodes": 8,

"nproc_per node": 2,

"module": "instructlab.training.main ds",
"model name or path": "/mnt/storage/model/granite-3.1-8b-s1
"data path": "/mnt/storage/dataset/data.jsonl"”,
"output dir": "/mnt/output/model”,

"num _epochs": 1,

"effective batch size": 3840,

"learning rate": 0.0001,

"num warmup steps": 800,

"save samples": 0,

"log level": "INFO",

15 of 23 10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

"max_batch_len": 35000,

"seed": 42,
"distributed training framework": "fsdp",
"cpu offload optimizer": true,

"cpu offload params": true,

"fsdp sharding strategy": "HYBRID SHARD"

Copy snippet

Network attachment definitions

To make secondary networks available to the training pods, OpenShift
uses NetworkAttachmentDefinition (NAD) custom resources.
These NADs define how the Container Network Interface (CNI) plug-ins
should attach additional network interfaces to a pod. Different NADs were
created for the vNIC and SR-IOV tests.

VNIC (host-device) attachment definition

For the standard vNIC tests,a host-device NAD was used. This
configuration instructs the Multus CNI to take an existing network device
on the host node (for example, ensl13)and move it directly into the
pod's network namespace, providing direct access to the physical
network. The whereabouts IP Address Management (IPAM) plug-in
was used to assign a static IP address to this interface from a predefined
range.

apiVersion: k8s.cni.cncf.io/vl
kind: NetworkAttachmentDefinition

metadata:
name: network-port-01
spec:
config: '{
"cniVersion": "0.3.1",
"name": "network-port-01",
"device": "ensl3",
"type": "host-device",
"ipam": {

16 of 23 10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

"type": "whereabouts",
"range": "10.241.129.0/24"
}

}

Copy snippet

SR-IOV with RDMA attachment definition

For the high-performance tests, the host-device CNI plug-in was
also used, but with a specific custom flag to enable RDMA capabilities.
This NAD takes a specific SR-IOV network device on the host node (for
example, enp223s0) and passes it into the pod. The key difference is
the isRdma: true flag, which signals to the underlying network fabric
to enable RDMA (kernel-bypass) mode for this interface, providing the
lowest possible latency for internode communication.

apiVersion: k8s.cni.cncf.io/vl
kind: NetworkAttachmentDefinition

metadata:
name: subnet-rdma-port-07
spec:
config: '{
"cniVersion": "0.3.1",
"name": "subnet-rdma-port-07",
"device": "enp223s0",
"type": "host-device",
"ipam": {
"type": "whereabouts",
"range": "10.241.129.0/24"
}

"isRdma": true

Copy snippet

Performance results and analysis

Our tests clearlv demonstrate that network configuration is the sinale

17 of 23 10/20/25, 1:44 PM

Network performance in distributed training | Red Hat Dev...

18 of 23

’ -~ -~

most critical factor for achieving high GPU utilization and scalability in a
distributed training environment.

L40S cluster results

The baseline performance was established with a single node, achieving a
throughput of 2.04 samples per second. When scaling to multiple nodes, a
clear distinction in performance emerged based on the network
configuration used for internode communication. Using the default pod
network, scaling to 2, 4, and 8 nodes yielded throughputs of 2.91, 3.73, and
5.46 samples per second, respectively. In contrast, using dedicated vNICs
resulted in significantly better performance, with throughputs of 3.98, 7.16,
and 12.68 samples per second for the same node counts. For each multi-
node vNIC test, the number of secondary network interfaces used was
equal to the number of nodes participating in the training job.

The performance gap widens as the node count increases, highlighting
the pod network's limitations for high-bandwidth communication. The
overhead from the virtual overlay network, which encapsulates all pod-to-
pod traffic, introduces latency and consumes CPU cycles, creating a
bottleneck that prevents the GPUs from being fully utilized. The
dedicated vNICs provide a more direct, lower-latency path to the physical
network, which is critical for the frequent gradient synchronization
required by distributed training, thus enabling more efficient scaling.

The performance comparison is shown in Figure 6.

Distributed Training Performance Comparison

12.68

16

546

3.98 3.73

[= 2.91
2.04

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://developers.redhat.com/sites/default/files/image4_77.png

Network performance in distributed training | Red Hat Dev... https://developers.redhat.com/articles/2025/10/16/network-p...

| I | |

Number of Nodes

Figure 6: 2xL40S distributed training performance: throughput comparison by
node count and network type.

H100 cluster results

With a single 8xH100 node, the training achieved a baseline throughput

of 21.34 samples per second. When scaling to two nodes, the results
dramatically illustrated the impact of the network bottleneck. Both the
default pod network (3.46 samples per second) and standard vNICs (12.28
samples per second) failed to scale, delivering significantly lower
throughput than the single-node baseline.

This negative scaling occurs because the high latency and low bandwidth
of these networks created a communication bottleneck so severe that the
time spent waiting for gradient synchronization between nodes exceeded
the computational gains from the additional GPUs. The FSDP training
protocol attempts to hide communication overhead by overlapping
computation with communication. For slower GPUs like the L40S, it was
possible to hide the communication overhead of using vNICs, but for
faster GPUs like the H100 it was not possible to hide the communication
overhead of vNICs, which is why SR-IOV interfaces were necessary for
better performance.

A profound performance increase was only achieved by using high-
performance networking. Switching to SR-IOV interfaces yielded a
throughput of 40.36 samples per second, nearly doubling the single-
node performance and confirming that direct hardware access is essential
to prevent network bottlenecks with top-tier GPUs.

Enabling RDMA provided a final, marginal improvement to 40.58 samples
per second, suggesting that for this model size, the primary bottleneck
was hypervisor overhead, which SR-IOV solves, rather than CPU
involvement in data transfer, which RDMA addresses. For the 2-node

19 of 23 10/20/25, 1:44 PM

https://developers.redhat.com/sites/default/files/image4_77.png
https://developers.redhat.com/sites/default/files/image4_77.png
https://developers.redhat.com/sites/default/files/image4_77.png

Network performance in distributed training | Red Hat Dev...

20 of 23

tests, each configuration used a single secondary network interface;
further tests showed that increasing the number of interfaces to 2, 4, or 8
did not yield a significant change in throughput, indicating that a single
high-bandwidth NIC was sufficient for this workload.

See Figure 7 for the 8xH100 distributed training performance comparison.

H100 Distributed Training Performance

| ughput

21.34
12.28

3.46

Configuration

YNICS SRH-IOV SR-10V + ROMA

Figure 7: 8xH100 distributed training performance: throughput comparison by node
count and network type.

Conclusions and strategic recommendations

The results from this comprehensive testing yield several key findings for
optimizing distributed Al training on OpenShift.

First and foremost, the default OpenShift pod network is insufficient for
high-performance distributed workloads, creating a significant bottleneck
that worsens at scale. Utilizing secondary networks is essential.

For mid-tier GPU clusters like the L40S, standard vNICs provide a
substantial and adequate performance uplift. However, for high-end
clusters using HIOO GPUs, the network becomes the primary limiting
factor, and a high-throughput solution like SR-IOV is required to prevent

DIl ~+armatian AanA Aa~hiAvA ArRtimAal thraniAalh A+

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://developers.redhat.com/sites/default/files/image1_186.png
https://developers.redhat.com/sites/default/files/image1_186.png
https://developers.redhat.com/sites/default/files/image1_186.png

Network performance in distributed training | Red Hat Dev...

21 of 23

U U DLudlvalvii diiu acllicve vptiiial unnvuyliput.

Finally, while the benefits of RDMA were marginal for the 8B model
tested, the data indicates its value will become critical when training larger
models with more intensive internode communication requirements.

Recommendations

Based on the test results, the following strategic recommendations are
proposed:

¢ Avoid the pod network for multi-node training. The default
OpenShift SDN is not suitable for the high-bandwidth, low-latency
communication required by distributed training. It should be avoided
for any multi-node workloads.

¢ Match network technology to GPU tier. For clusters with mid-
range GPUs (for example, L40S), standard vNICs offer a significant
performance improvement and represent a cost-effective solution
for achieving good scalability.

¢ Mandate SR-IQOV for high-end GPUs. For clusters equipped with
top-tier GPUs (for example, H100), SR-IOV is essential. The
performance gains are substantial and necessary to prevent the
network from becoming the primary bottleneck, ensuring that the
GPU investment is fully utilized.

¢ Plan for RDMA with larger models. While not critical for the 8B
model tested, RDMA should be considered a standard requirement
when planning infrastructure for training much larger models, as its
CPU-bypass capabilities will become crucial for preventing network
bottlenecks.

Related Posts

Improve GPU utilization with Kueue in OpenShift Al
Optimize GPU utilization with Kueue and KEDA

GPU enablement on MicroShift

https://developers.redhat.com/articles/2025/10/16/network-p...

10/20/25, 1:44 PM

https://developers.redhat.com/articles/2025/05/22/improve-gpu-utilization-kueue-openshift-ai
https://developers.redhat.com/articles/2025/08/26/optimize-gpu-utilization-kueue-and-keda
https://developers.redhat.com/articles/2022/06/23/gpu-enablement-microshift
https://developers.redhat.com/articles/2025/05/22/improve-gpu-utilization-kueue-openshift-ai
https://developers.redhat.com/articles/2025/05/22/improve-gpu-utilization-kueue-openshift-ai
https://developers.redhat.com/articles/2025/05/22/improve-gpu-utilization-kueue-openshift-ai
https://developers.redhat.com/articles/2025/08/26/optimize-gpu-utilization-kueue-and-keda
https://developers.redhat.com/articles/2025/08/26/optimize-gpu-utilization-kueue-and-keda
https://developers.redhat.com/articles/2025/08/26/optimize-gpu-utilization-kueue-and-keda
https://developers.redhat.com/articles/2022/06/23/gpu-enablement-microshift
https://developers.redhat.com/articles/2022/06/23/gpu-enablement-microshift
https://developers.redhat.com/articles/2022/06/23/gpu-enablement-microshift

